DEPARTMENT OF INDUSTRIAL ENGINEERING COURSE SYLLABUS

COURSE TITLE	ENGLISH CODE/NO	ARABIC	CREDITS				
		CODE/N O.	Th.	Pr.	Tr.	Tota l	
Operations Research II	IE 411	هـ ص ٤١١	3	2	-	3	
Pre-requisites:	IE 311, IE 332						
Course Role in Curriculum	Required or Elective:		Required Core Course				

Catalogue Description:

Non-linear programming. Dynamic programming. Inventory models. Waiting line models. Markov analysis. Introduction to Game theory. Applications in industrial, service and public systems.

Textbooks:

Quantitative Analysis for Management, Barry Render, Ralph M. Stair (Jr) and Michael Henna, Prentice Hall International Inc., 10th Edition (2006)

Supplemental Materials:

- 1. Operations Research: Hamdy A. Taha., John Wiley & Sons, Inc., 7th Edition, 2002
- 2. Introduction to Operations Research, Hillier, F.S., and Lieberman, G.J., McGraw Hill Company, 8th Edition, 2004

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. List the knowledge of analytical techniques of OR-II
- 2. Explain the basic principles and techniques of OR-II
- 3. Formulate, solve, analyze and evaluate the NLP problems, their applications
- 4. Formulate, solve, analyze and evaluate the waiting line model & its problems
- 5. Formulate, solve, analyze and evaluate the dynamic programming and its applications
- 6. Formulate, solve, analyze & evaluate Inventory models and their problems
- 7. Formulate, solve, analyze and evaluate Markov Series and their applications
- 8. Formulate, solve, analyze, Game theory problems
- 9. Select formulate analyze, & solve real life problems for Term project within team
- 10. Realize the computer software applications and solve different OR-II problems

<u>To</u>	pics to be Covered:	<u>Duration</u> in Weeks
1	Non-linear Programming; graphical illustration, concave and convex functions, unconstraint optimization	
2	Waiting Lines and Queuing Theory Models: characteristics of models. single, multi-channel models, constant service time model, finite population model	3
3	Dynamic Programming; shortest route problem by DP, terminology, notations, knapsack problem, air transportation service problem, resource allocation problems, distribution of effort problem	3
4	Inventory models, elements of inventory control, inventory control systems, economic order quantity models, quantity discounts, reorder point, order quantity for a periodic inventory system	3
5	Markov Analysis: introduction, states & state probabilities, transition matrix, predicting future market share, equilibrium conditions, absorbing states & the fundamental matrix	
6	Game theory: language of games, the minimax criterion, pure strategy games, mixed strategy games, dominance.	3
Stu	adent Outcomes addressed by the course: (Put a √ sign)	
(a)	(a) an ability to apply knowledge of mathematics, science, and engineering	
(b) an ability to design and conduct experiments, as well as to analyze and interpret data		
(c)	an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	
(d	1 1	
(e) an ability to identify, formulate, and solve engineering problems		√
(f		
(g		
(h	global, economic, environmental, and societal context	
(i)	<u> </u>	
(j)	• • •	
(k	an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.	√

Key Student Outcomes assessed in the course: (a) (e) and (k)

Instructor or course coordinator: Dr. Osman Taylan*Last updated:* February 2015